播放记录
  • 北地猎人

    HD

    动作片

      In the year 2961, the time is after humanity and nature has recovered the land. A hunter named Cygnus is called to rise above his 活死人军团在线duty. He provides for Last Arc, a once nomadic band of survivors in need of food and water that is now growing scarce. The answer must be found before a group of outlandish Heretics descend upon them. Cygnus must voyage across the treacherous landscape to defend his people. Sent by Nova, the matriarch of the band, she acts based on her vision for Cygnus to find2021国产麻豆剧传媒在线 a seed of hope. The future of Last Arc is for him to discover, Cygnus ventures into a好妈妈4完整在线观看 hostile landscape in search of an answer for his people. On this journey of encountering many traps and dangers, Cygnus discovers what has been hunting him is his identity.

  • 微微的猩红

    HD

    剧情片

      改编自詹姆斯·M·凯恩的小說《Love's Lovel街头篮球补丁下载y Counterfeit》,一个城市商人在爱上新当选市长的未婚妻时,卷入了有组织犯罪、腐败的城市政治和贪污。

  • 壮志凌云1986

    HD

    动作片

      “独行侠”皮特·米切尔(汤姆•克鲁斯 Tom Cruise 饰)的父亲是个战功显赫的老飞行员,他决心也要成为父亲那样的英雄。终于机会来了,他与军官“笨鹅”尼克·布拉德肖(安东尼•爱德华兹 Anthony Edwards 饰)一起被派到了Top Gun训练基地接受最严格的飞行训练。可是,“独行侠”的训练并不像预想中顺利,他的成绩一直不令人满意,一起训练的”冰人”汤姆·卡赞斯基(方·基默 Val Kilmer 饰)也对他也颇有微词。与此同时,“独行侠”遇到了美丽的女教官查莉(凯莉•麦吉利斯 Kelly McGillis 饰),两人对彼此暗生情愫,这令本来有些心灰意冷的“独行侠”重拾信心。在毕业前的一次训练中,“独行侠”搭档“笨鹅”再次同驾一机,但由于马达发生故障,“独行侠”与“笨鹅”被迫跳海,结果“笨鹅”不幸身亡。这次事件给“独行侠”带来了沉重的打击,本来因学业不顺就郁郁寡欢的他更加消沉了,甚至想要彻色婷亚洲五月底放弃成为飞行员的梦想。“独行侠”最终能否克服心障重回蓝天?

  • 装饰

    HD

    爱情片

      Philippe Clarence,朝阳娱乐 a famous Parisian dressmaker, seduces his friend's fiancee. But, for the 1st time in his life, this is for real. The film is also a sharp picture of the fashion world.  A philandering young dress designer plays fast and loose with the hearts of all the fair maidens he encounters, and leaves them in a Paris lurch. But when he meets the fiancée of his best friend, he falls deeply and truly in love with her. The girl is soon faced with two choices; marry the reliable fiancée whom she doesn't love, or run off with the dress designer with whom she is infatuated. She sees that she also has a third option and makes the wise choice...she rejects both. The dress designer is not too well equipped for accepting rejection, and he makes a bad decision.

  • 看穿读心术

    已完结

    欧美综艺

      爱尔兰幻术师、感应大师及魔术师Keith Barry,在节目中大展读心及植入想法进而影响他人行为的本领,引人入胜。  来自爱尔兰的Keith Barry,是幻术师兼感应大师及魔术师,也是2009 年国际魔术师学会颁发的「年度感应大师」最高荣誉梅林奖得主,还被封为拉斯维加斯09 年最佳魔天天看高清影视最新版术师。他曾主持《Close Encounters with Keith Barry》、《Keith Barry : Extraordinary》等结合读心及魔术的节目,于新节目《看穿读心术》(Deception with Keith Barry),他就展示其如何靠密切观察一个人的肢体语言、呼吸方式,以及细微的眼部动作,即能看穿实验对象的心思,甚至影响对方的行为silk 005。

  • 费马大定理

    HD

    纪录片

      本片从证明了费玛最后定理的安德鲁‧怀尔斯 Andrew Wiles开始谈起,描述了 Fermat's Last Theorm 的历史始末,往前回溯来看,1994年正是我在念大学的时候,当时完全没有一位教授在课堂上提到这件事,也许他们认为,一位真正的研究者,自然而然地会被数学吸引,然而对一位不是天才的学生来说,他需要的是老师的指引,引导他走向更高深的专业认知,而指引的道路,就在科普的精神上。  从费玛最后定理的历史中可以发现,有许多研究成果,都是研究人员燃烧热情,试图提出「有趣」的命题,然后再尝试用逻辑验证。  费玛最后定理:xn+yn=zn 当 n>2 时,不存在整数解  1. 1963年 安德鲁‧怀尔斯 Andrew Wiles被埃里克‧坦普尔‧贝尔 Eric Temple Bell 的一本书吸引,「最后问题 The Last Problem」,故事从这里开始。  2. 毕达哥拉斯 Pythagoras 定理,任一个直角三角形,斜边的平方=另外两边的平方和  x2+y2=z2  毕达哥拉斯三元组:毕氏定理的整数解  3. 费玛 Fermat 在研究丢番图 Diophantus 的「算数」第2卷的问题8时,在页边写下了註记  「不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;或者,总的来说,不可能将一个高於2次幂,写成两个同样次幂的和。」  「对这个命题我有一个十分美妙的证明,这里空白太小,写不下。」  4. 1670年,费玛 Fermat的儿子出版了载有Fermat註记的「丢番图的算数」  5. 在Fermat的其他註记中,隐含了对 n=4 的证明 => n=8, 12, 16, 20 ... 时无解  莱昂哈德‧欧拉 Leonhard Euler 证明了 n=3 时无解 => n=6, 9, 12, 15 ... 时无解  3是质数,现在只要证明费玛最后定理对於所有的质数都成立  但 欧基里德 证明「存在无穷多个质数」  6. 1776年 索菲‧热尔曼 针对 (2p+1)的质数,证明了 费玛最后定理 "大概" 无解  7. 1825年 古斯塔夫‧勒瑞-狄利克雷 和 阿得利昂-玛利埃‧勒让德 延伸热尔曼的证明,证明了 n=5 无解  8. 1839年 加布里尔‧拉梅 Gabriel Lame 证明了 n=7 无解  9. 1847年 拉梅 与 奥古斯汀‧路易斯‧科西 Augusti Louis Cauchy 同时宣称已经证明了 费玛最后定理  最后是刘维尔宣读了 恩斯特‧库默尔 Ernst Kummer 的信,说科西与拉梅的证明,都因为「虚数没有唯一因子分解性质」而失败  库默尔证明了 费玛最后定理的完整证明 是当时数学方法不可能实现的  10.1908年 保罗‧沃尔夫斯凯尔 Paul Wolfskehl 补救了库默尔的证明  这表示 费玛最后定理的完整证明 尚未被解决  沃尔夫斯凯尔提供了 10万马克 给提供证明的人,期限是到2007年9月13日止  11.1900年8月8日 大卫‧希尔伯特,提出数学上23个未解决的问题且相信这是迫切需要解决的重要问题  12.1931年 库特‧哥德尔 不可判定性定理  第一不可判定性定理:如果公理集合论是相容的,那么存在既不能证明又不能否定的定理。  => 完全性是不可能达到的  第二不可判定性定理:不存在能证明公理系统是相容的构造性过程。  => 相容性永远不可能证明  13.1963年 保罗‧科恩 Paul Cohen 发展了可以检验给定问题是不是不可判定的方法(只适用少数情形)  证明希尔伯特23个问题中,其中一个「连续统假设」问题是不可判定的,这对於费玛最后定理来说是一大打击  14.1940年 阿伦‧图灵 Alan Turing 发明破译 Enigma编码 的反转机  开始有人利用暴力解决方法,要对 费玛最后定理 的n值一个一个加以证明。  15.1988年 内奥姆‧埃尔基斯 Naom Elkies 对於 Euler 提出的 x4+y4+z4=w4 不存在解这个推想,找到了一个反例  26824404+153656394+1879604=206156734  16.1975年 安德鲁‧怀尔斯 Andrew Wiles 师承 约翰‧科次,研究椭圆曲线  研究椭圆曲线的目的是要算出他们的整数解,这跟费玛最后定理一样  ex: y2=x3-2 只有一组整数解 52=33-2  (费玛证明宇宙中指存在一个数26,他是夹在一个平方数与一个立方数中间)  由於要直接找出椭圆曲线是很困难的,为了简化问题,数学家採用「时鐘运算」方法  在五格时鐘运算中, 4+2=1  椭圆方程式 x3-x2=y2+y  所有可能的解为 (x, y)=(0, 0) (0, 4) (1, 0) (1, 4),然后可用 E5=4 来代表在五格时鐘运算中,有四个解  对於椭圆曲线,可写出一个 E序列 E1=1, E2=4, .....  17.1954年 至村五郎 与 谷山丰 研究具有非同寻常的对称性的 modular form 模型式  模型式的要素可从1开始标号到无穷(M1, M2, M3, ...)  每个模型式的 M序列 要素个数 可写成 M1=1 M2=3 .... 这样的范例  1955年9月 提出模型式的 M序列 可以对应到椭圆曲线的 E序列,两个不同领域的理论突然被连接在一起  安德列‧韦依 採纳这个想法,「谷山-志村猜想」  18.朗兰兹提出「朗兰兹纲领」的计画,一个统一化猜想的理论,并开始寻找统一的环链  19.1984年 格哈德‧弗赖 Gerhard Frey 提出  (1) 假设费玛最后定理是错的,则 xn+yn=zn 有整数解,则可将方程式转换为y2=x3+(AN-BN)x2-ANBN 这样的椭圆方程式  (2) 弗赖椭圆方程式太古怪了,以致於无法被模型式化  (3) 谷山-志村猜想 断言每一个椭圆方程式都可以被模型式化  (4) 谷山-志村猜想 是错误的  反过来说  (1) 如果 谷山-志村猜想 是对的,每一个椭圆方程式都可以被模型式化  (2) 每一个椭圆方程式都可以被模型式化,则不存在弗赖椭圆方程式  (3) 如果不存在弗赖椭圆方程式,那么xn+yn=zn 没有整数解  (4) 费玛最后定理是对的  20.1986年 肯‧贝里特 证明 弗赖椭圆方程式无法被模型式化  如果有人能够证明谷山-志村猜想,就表示费玛最后定理也是正确的  21.1986年 安德鲁‧怀尔斯 Andrew Wiles 开始一个小阴谋,他每隔6个月发表一篇小论文,然后自己独力尝试证明谷山-志村猜想,策略是利用归纳法,加上 埃瓦里斯特‧伽罗瓦 的群论,希望能将E序列以「自然次序」一一对应到M序列  22.1988年 宫冈洋一 发表利用微分几何学证明谷山-志村猜想,但结果失败  23.1989年 安德鲁‧怀尔斯 Andrew Wiles 已经将椭圆方程式拆解成无限多项,然后也证明了第一项必定是模型式的第一项,也尝试利用 依娃沙娃 Iwasawa 理论,但结果失败  24.1992年 修改 科利瓦金-弗莱契 方法,对所有分类后的椭圆方程式都奏效  25.1993年 寻求同事 尼克‧凯兹 Nick Katz 的协助,开始对验证证明  26.1993年5月 「L-函数和算术」会议,安德鲁‧怀尔斯 Andrew Wiles 发表谷山-志村猜想的证明  27.1993年9月 尼克‧凯兹 Nick Katz 发现一个重大缺陷  安德鲁‧怀尔斯 Andrew Wiles 又开始隐居,尝试独力解决缺陷,他不希望在这时候公布证明,让其他人分享完成证明的甜美果实  28.安德鲁‧怀尔斯 Andrew Wiles 在接近放弃的边缘,在彼得‧萨纳克的建议下,找到理查德‧泰勒的协助  29.1994年9月19日 发现结合 依娃沙娃 Iwasawa 理论与 科利瓦金-弗莱契 方法就能够完全解决问题  30.「谷山-志村猜想」被证明了,故得证「费玛最后定理」  ii  费马大定理  300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=zn没有非零整数解”。  费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最着名的定理—费马大定理。  费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。  费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=zn只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。  为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用13  0页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。  费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达  哥拉斯定理——来表达的。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,  斜边的平方等于两直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在  研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n  大于2时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题8的页边处记下这  个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空  白太小,写不下。”这就是数学史上着名的费马大定理或称费马最后的定理。费马制造了  一个数学史上最深奥的谜。  大问题  在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不  解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,  文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最  值得为之奋斗的事。  安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯  已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,  编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。  ”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答  ,怀尔斯被吸引住了。  这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又  一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆  起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解  决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永  远不会放弃它。我必须解决它。”  怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare  学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能  带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coate  s)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。” 科茨说:“我记得一位同事  告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其  为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的  思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研  究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任  是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究  生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定  是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他  的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。  ”  科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的  一个转折点,椭圆方程的研究是他实现梦想的工具。  孤独的战士  1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学  的教授。在科茨的指导下,怀尔斯或许比世界上其他人都更懂得椭圆方程,他已经成为一  个着名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马  大定理的任务也是极为艰巨的。  在怀尔斯的费马大定理的证明中,核心是证明“谷山-志野花影院在线观看免费完整版村猜想”,该猜想在两个非  常不同的数学领域间建立了一座新的桥梁。“那是1986年夏末的一个傍晚,我正在一个朋  友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大  定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为  这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想……我十分清楚  我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。  20世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他  回答说:“在开始着手之前,我必须用3年的时间作深入的研究,而我没有那么多的时间  浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到  这个问题中,但是与希尔伯特不一样,他愿意冒这个风险。  怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费  马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中  ,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有  与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶  楼书房里他开始了通过谷山-志村猜想来证明费马大定理的战斗。  这是一场长达7年的持久战,这期间只有他的妻子知道他在证明费马大定理。  欢呼与等待  经过7年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了  费马大定理。现在是向世界公布的时候了。1993年6月底,有一个重要的会议要在剑桥大  学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择  在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。  1993年6月23日,牛顿研究所举行了20世纪最重要的一次数学讲座。两百名数学家聆  听了这一演讲,但他们之中只有四分之一的人完全懂得黑板上的希腊字母和代数式所表达  的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安  德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风  声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯  定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完  费马大定理的证明时,我说:‘我想我就在这里结束’,会场上爆发出一阵持久的鼓掌声  。”  《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道  费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最着名的数学家,也是唯一的数  学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。最有创  意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模  特。  当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要  求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审  稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个  夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发  现了。  我的心灵归于平静  由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定  2-3个审稿人,而是6个审稿人。200页的证明被分成6章,每位审稿人负责其中一章。  怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这  些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第3章,1993年8月23日,他发现了  证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都  行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是6个多月过去了  ,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情  况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过  长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作  。  泰勒1994年1月份到普林斯顿,可是到了9月,依然没有结果,他们准备放弃了。泰勒  鼓励他们再坚持一个月。怀尔斯决定在9月底作最后一次检查。9月19日,一个星期一的早  晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个  难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历……它的美是如  此地难以形容;它又是如此简单和优美。20多分钟的时间我呆望它不敢相信。然后白天我  到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。”  这是少年时代的梦想和8年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世  界不再怀疑这一次的证明了。这两篇论文总共有130页,是历史上核查得最彻底的数学稿  件,它们发表在1995年5月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版  上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最  终的证明可与分裂原子或发现DNA的结构相比,对费马大定理的证明是人类智力活动的一  曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安  德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。”  声望和荣誉纷至沓来。1995年,怀尔斯获得瑞典皇家学会颁发的Schock数学奖,199  6年,他获得沃尔夫奖,并当选为美国科学院外籍院士。  怀尔斯说:“……再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如  此少有的特权,在我的成年时期实现我童年的梦想……那段特殊漫长的探索已经结束了,  我的心已归于平静。”  费马大定理只有在相对数学理论的建立之后,才会得到最满意的答案。相对数学理论没有完成之前,谈这个问题是无力地.因为人们对数量和自身的认识,还没有达到一定的高度.  iii  费马大定理与怀尔斯的因果律-美国公众广播网对怀尔斯的专访  358年的难解之谜  数学爱好者费马提出的这个问题非常简单,它用一个每个中学生都熟悉的数学定理——毕达哥拉斯定理来表达。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两个直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他在《算术》这本书靠近问题8的页边处写下了这段文字:“设n是大于2的正整数,则不定方程xn+yn=zn没有非整数解,对此,我确信已发现一个美妙的证法,但这里的空白太小,写不下。”费马习惯在页边写下猜想,费马大定理是其中困扰数学家们时间最长的,所以被称为Fermat’s Last Theorem(费马最后的定理)——公认为有史以来最着名的数学猜想。  在畅销书作家西蒙·辛格(Simon Singh)的笔下,这段神秘留言引发的长达358年的猎逐充满了惊险、悬疑、绝望和狂喜。这段历史先后涉及到最多产的数学大师欧拉、最伟大的数学家高斯、由业余转为职业数学家的柯西、英年早逝的天才伽罗瓦、理论兼试验大师库默尔和被誉为“法国历史上知识最为高深的女性”的苏菲·姬尔曼……法国数学天才伽罗瓦的遗言、日本数学界的明日之星谷山丰的神秘自杀、德国数学爱好者保罗·沃尔夫斯凯尔最后一刻的舍死求生等等,都仿佛是冥冥间上帝导演的宏大戏剧中的一幕,为最后谜底的解开埋下伏笔。终于,普林斯顿的怀尔斯出现了。他找到谜底,把这出戏推向高潮并戛然而止,留下一段耐人回味的传奇。  对怀尔斯而言,证明费马大定理不仅是破译一个难解之谜,更是去实现一个儿时的梦想。“我10岁时在图书馆找到一本数学书,告诉我有这么一个问题,300多年前就已经有人解决了它,但却没有人看到过它的证明,也无人确信是否有这个证明,从那以后,人们就不断地求证。这是一个10岁小孩就能明白的问题,然后历史上诸多伟大的数学家们却不能解答。于是从那时起,我就试过解决它,这个问题就是费马大定理。”  怀尔斯于1970年先后在牛津大学和剑桥大学获得数学学士和数学博士学位。“我进入剑桥时,我真正把费马大定理搁在一边了。这不是因为我忘了它,而是我认识到我们所掌握的用来攻克它的全部技术已经反复使用了130年。而这些技术似乎没有触及问题根本。”因为担心耗费太多时间而一无所获,他“暂时放下了”对费马大定理的思索,开始研究椭圆曲线理论——这个看似与证明费马大定理不相关的理论后来却成为他实现梦想的工具。  时间回溯至20世纪60年代,普林斯顿数学家朗兰兹提出了一个大胆的猜想:所有主要数学领域之间原本就存在着的统一的链接。如果这个猜想被证实,意味着在某个数学领域中无法解答的任何问题都有可能通过这种链接被转换成另一个领域中相应的问题——可以被一整套新方案解决的问题。而如果在另一个领域内仍然难以找到答案,那么可以把问题再转换到下一个数学领域中……直到它被解决为止。根据朗兰兹纲领,有一天,数学家们将能够解决曾经是最深奥最难对付的问题——“办法是领着这些问题周游数学王国的各个风景胜地”。这个纲领为饱受哥德尔不完备定理打击的费马大定理证明者们指明了救赎之路——根据不完备定理,费马大定理是不可证明的。  怀尔斯后来正是依赖于这个纲领才得以证明费马大定理的:他的证明——不同于任何前人的尝试——是现代数学诸多分支(椭圆曲线论,模形式理论,伽罗华表示理论等等)综合发挥作用的结果。20世纪50年代由两位日本数学家(谷山丰和志村五郎)提出的谷山—志村猜想(Taniyama-Shimura conjecture)暗示:椭圆方程与模形式两个截然不同的数学岛屿间隐藏着一座沟通的桥梁。随后在1984年,德国数学家格哈德·费赖(Gerhard Frey)给出了如下猜想:假如谷山—志村猜想成立,则费马大定理为真。这个猜想紧接着在1986年被肯·里贝特(Ken Ribet)证明。从此,费马大定理不可摆脱地与谷山—志村猜想链接在一起:如果有人能证明谷山—志村猜想(即“每一个椭圆方程都可以模形式化”),那么就证明了费马大定理。  “人类智力活动的一曲凯歌”  怀尔斯诡秘的行踪让普林斯顿的着名数学家同事们困惑。彼得·萨奈克(Peter Sarnak)回忆说:“ 我常常奇怪怀尔斯在做些什么?……他总是静悄悄的,也许他已经‘黔驴技穷’了。”尼克·凯兹则感叹到:“一点暗示都没有!”对于这次惊天“大预谋”,肯·里比特(Ken Ribet)曾评价说:“这可能是我平生来见过的唯一例子,在如此长的时间里没有泄露任何有关工作的信息。这是空前的。  1993年晚春,在经过反复的试错和绞尽脑汁的演算,怀尔斯终于完成了谷山—志村猜想的证明。作为一个结果,他也证明了费马大定理。彼得·萨奈克是最早得知此消息的人之一,“我目瞪口呆、异常激动、情绪失常……我记得当晚我失眠了”。  同年6月,怀尔斯决定在剑桥大学的大型系列讲座上宣布这一证明。 “讲座气氛很热烈,有很多数学界重要人物到场,当大家终于明白已经离证明费马大定理一步之遥时,空气中充满了紧张。” 肯·里比特回忆说。巴里·马佐尔(Barry Mazur)永远也忘不了那一刻:“我之前从未看到过如此精彩的讲座,充满了美妙的、闻所未闻的新思想,还有戏剧性的铺垫,充满悬念,直到最后到达高潮。”当怀尔斯在讲座结尾宣布他证明了费马大定理时,他成了全世界媒体的焦点。《纽约时报》在头版以《终于欢呼“我发现了!”久远的数学之谜获解》(“At Last Shout of ‘Eureka!’ in Age-Old Math Mystery”)为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。  与此同时,认真核对这个证明的工作也在进行。遗憾的是,如同这之前的“费马大定理终结者”一样,他的证明是有缺陷的。怀尔斯现在不得不在巨大的压力之下修正错误,其间数度感到绝望。John Conway曾在美国公众广播网(PBS)的访谈中说: “当时我们其他人(怀尔斯的同事)的行为有点像‘苏联政体研究者’,都想知道他的想法和修正错误的进展,但没有人开口问他。所以,某人会说,‘我今天早上看到怀尔斯了。’‘他露出笑容了吗?’‘他倒是有微笑,但看起来并不高兴。’”  撑到1994年9月时,怀尔斯准备放弃了。但他临时邀请的研究搭档泰勒鼓励他再坚持一个月。就在截止日到来之前两周, 9月19日 ,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我发现了它……它美得难以形容,简单而优雅。我对着它发了20多分钟呆。然后我到系里转了一圈,又回到桌子旁看看它是否还在那里——它确实还在那里。”  怀尔斯的证明为他赢得了最慷慨的褒扬,其中最具代表性的是他在剑桥时的导师、着名数学家约翰·科茨的评价:“它(证明)是人类智力活动的一曲凯歌”。  一场旷日持久的猎逐就此结束,从此费马大定理与安德鲁·怀尔斯的名字紧紧地被绑在了一起,提到一个就不得不提到另外一个。这是费马大定理与安德鲁·怀尔斯的因果律。  历时八年的最终证明  在怀尔斯不多的接受媒体采访中,美国公众广播网(PBS)NOVA节目对怀尔斯的专访相当精彩有趣,本文节选部分以飨读者。  七年孤独  NOVA:通常人们通过团队来获得工作上的支持,那么当你碰壁时是怎么解决问题的呢?  怀尔斯:当我被卡住时我会沿着湖边散散步,散步的好处是使你会处于放松状态,同时你的潜意识却在继续工作。通常遇到困扰时你并不需要书桌,而且我随时把笔纸带上,一旦有好主意我会找个长椅坐下来打草稿……  NOVA:这七年一定交织着自我怀疑与成功……你不可能绝对有把握证明。  怀尔斯:我确实相信自己在正确的轨道上,但那并不意味着我一定能达到目标——也许仅仅因为解决难题的方法超出现有的数学,也许我需要的方法下个世纪也不会出现。所以即便我在正确的轨道上,我却可能生活在错误的世纪。  NOVA:最终在1993年,你取得了突破。  怀尔斯:对,那是个5月末的早上。Nada,我的太太,和孩子们出去了。我坐在书桌前思考最后的步骤,不经意间看到了一篇论文,上面的一行字引起了我的注意。它提到了一个19世纪的数学结构,我霎时意识到这就是我该用的。我不停地工作,忘记下楼午饭,到下午三四点时我确信已经证明了费马大定理,然后下楼。Nada很吃惊,以为我这时才回家,我告诉她,我解决了费马大定理。  最后的修正  NOVA:《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》,但他们并不知道这个证明中有个错误。  怀尔斯:那是个存在于关键推导中的错误,但它如此微妙以至于我忽略了。它很抽象,我无法用简单的语言描述,就算是数学家也需要研习两三个月才能弄懂。  NOVA:后来你邀请剑桥的数学家理查德·泰勒来协助工作,并在1994年修正了这个最后的错误。问题是,你的证明和费马的证明是同一个吗?  怀尔斯:不可能。这个证明有150页长,用的是20世纪的方法,在费马时代还不存在。  NOVA:那就是说费马的最初证明还在某个未被发现的角落?  怀尔斯:我不相信他有证明。我觉得他说已经找到解答了是在哄自己。这个难题对业余爱好者如此特别在于它可能被17世纪的数学证明,尽管可能性极其微小。  NOVA:所以也许还有数学家追寻这最初的证明。你该怎么办呢?  怀尔斯:对我来说都一样,费马是我童年的热望。我会再试其他问题……证明了它我有一丝伤感,它已经和我们一起这么久了……人们对我说“你把我的问题夺走了”,我能带给他们其他的东西吗?我感觉到有责任。我希望通过解决这个问题带来的兴奋可以激励青年数学家们解决其他许许多多的难题。  iv  谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(某种数论中用到的周期性全纯函数)之间的重要联系。虽然名字是从谷山-志村猜想而来,定理的证明是由安德鲁·怀尔斯, Christophe Breuil, Brian Conrad, Fred Diamond,和Richard Taylor完成.  若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列  ap = np − p,  这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。 谷山-志村定说:  "所有Q上的椭圆曲线是模的"。  该定理在1955年9月由谷山丰提出猜想。到1957年为止,他和志村五郎一起改进了严格性。谷山于1958年自杀身亡。在1960年代,它和统一数学中的猜想Langlands纲领联系了起来,并是关键的组成部分。猜想由André Weil于1970年代重新提起并得到推广,Weil的名字有一段时间和它联系在一起。尽管有明显的用处,这个问题的深度在后来的发展之前并未被人们所感觉到。  在1980年代当Gerhard Freay建议谷山-志村猜想(那时还是猜想)蕴含着费马最后定理的时候,它吸引到了不少注意力。他通过试图表明费尔马大定理的任何范例会导致一个非模的椭圆曲线来做到这一点。Ken Ribet后来证明了这一结果。在1995年,Andrew Wiles和Richard Taylor证明了谷山-志村定理的一个特殊情况(半稳定椭圆曲线的情况),这个特殊情况足以证明费尔马大定理。  完整的证明最后于1999年由Breuil,Conrad,Diamond,和Taylor作出,他们在Wiles的基础上,一块一块的逐步证明剩下的情况直到全部完成。  数论中类似于费尔马最后定理得几个定理可以从谷山-志村定理得到。例如:没有立方可以写成两个互质n次幂的和, n ≥ 3. (n = 3的情况已为欧拉所知)  在1996年三月,Wiles和Robert Langlands分享了沃尔夫奖。虽然他们都没有完成给予他们这个成就的定理的完整形式,他们还是被认为对最终完成的证明有着决定性影响。

  • 罪恶天使1943

    DVD

    剧情片

      玛丽安娜(Renée Faure 饰)从小立志成为一名修女,而在偌大的修道院中,没有任何一个人对待上帝能有玛丽安娜这般虔诚,因此,玛丽安娜成为了修女们眼中的异类。对于同伴们的嘲笑和奚落,玛丽日本免费新区二安娜并不在意,侍奉着上帝的每一天都让她的内心感到无比的宁静和快乐。  某一篮球比赛直播天,这种宁静被打破了,她听见了上帝的声音,让她帮助名叫泰莱斯(Jany Holt 饰)的女人。泰莱斯是一个妓女,犯了谋杀罪行的她为了逃避惩罚躲入了修道院中。对于玛丽安娜的照顾和关怀,泰莱斯置若罔闻,在内心里,她甚至不相信上帝的存在。终于,警察来到修道院逮捕了泰莱斯,玛丽安娜伤心欲绝。被逐出教会的她依然日日躲在教会后面的树林里祷告,终于患城人漫画上不治之症。临死前,泰莱斯被带到玛丽安娜的跟前,在她憔悴虚弱的脸上,泰莱斯仿佛看见了上帝,也看见了自己的罪孽。

  • 时间旅行者的妻子

    已完结

    欧美剧

      本剧改编自Audrey Niffenegg重庆市人口信息平台er的同名小说,讲述Clare及Henry之间复杂、科幻的爱情故事。

  • 心向快乐第二季

    已完结

    欧美剧

      Netflix续订半自传喜剧《心向快乐 Feel Good》第二季,并确定为最终季。  该剧第一季为Channel 4和Ne踩踏网tflix联合制作,第二季由Netflix独家制作。

  • 偷渡者2021

    HD

    科幻片

      一艘宇宙飞船搭载着三位科学家飞往火星执行科研任务。起飞后,队长意外发就去问现飞船上竟然滞留了一名地面工程师。同时,飞船空气净化系统遭到永久破坏,剩余的氧气只能支持三人存活。爱情电影网 天翼海谁生,谁死?四人进退两老师晚上好演员表难之际,科研小队的医学家提出了一个危险的求生计划。

  • 以假乱真:赝品的真实故事

    HD

    纪录片

      <小黎;/p>

  • 第二人生 第二季

    已完结

    欧美剧

    王美莼事件  一觉醒来望着天花板  闻着弥漫在上空的消毒水味道  身着白色长衫的人在走廊上忙碌着  任凭眼前的人自称是你的父母朋友情人  只听说他们说你患上了什么逆行性遗忘症  好吧,你出了车祸  好吧,你失意了  好吧,你叫Samantha  好吧,你要开始“第二人生”了。。。。。。  ABC 去年的喜剧《第二人生》虽然在情节上给人些许模仿韩剧的感觉,毕竟韩剧中的“车祸+失意”那可以说是电视剧史上的”经典“,很少能找到个当红的韩国演员没有"失意"过。但是老美的编剧们似乎就是有大力丸,总是可以把老掉牙的东西玩出点花样,《第二人生》在情节上虽然也逃不过失意剧的老三样,但黑糖玛是总是能在不经意间给你带来点新意。  Samantha一个知名地产公司的副总裁,作为女强人事业上,用尽一切手段为的就是要往上爬,可以出卖朋友,出卖家人,甚至是自己;生活中,放荡,糜烂,典型的物质拜金女。可是一场车祸,这个曾经的play girl却成为了善良纯洁的乖乖女,可是不时记忆起曾经的自己还是会嘘唏不已。可是亲情,友情,爱情却并没有抛弃她,老爸Howard,老妈Regina,胖妹死党Dena,风骚女死党Andrea,前男友Todd,甚至是大楼的看门人Frank,都成了Samantha新人生中的见证者。  上一季中,Samantha3366双人小游戏大全和前男友 Todd的分分和和一直是大家关注的焦点,他们会再次走到一起吗?Samantha会想起曾经的自己吗?她会再次成为曾经那个bad girl吗?我们还会发现曾经的Samantha哪些劣迹呢?

  • 赢家先生第一季

    已完结

    欧美剧

      Leslie Winner是一个老好人,但他总是意外地自找麻烦。好在尽管如此,他还是遇到了一个爱他全部视频列表安卓免费并且愿意忍受他的未婚妻Jemma。两人正在筹备婚礼,但为了支付度蜜月的费用,Leslie需要找个工作——于是,这幸福的笨蛋要经历重重考验:他用油漆枪装饰房子,结果搞得一塌糊涂;去参加一场紧张的面试,却穿着拖歪歪漫画首页免费登录页面鞋;找了一份餐厅的工作,是在自动钢琴前假装演奏。Leslie究竟能不能保持不惹麻烦、成功携手Jemma 步入婚姻殿堂呢?

  • 有家真好第一季

    已完结

    欧美剧

      喜剧《有家真好 Home》根据Channel 4同名剧改编,美版讲述Mark及Melanie两夫妇与儿子Jonah到逆流而上的你全集免费观看林中小屋度假后,富婆印刷图库回来时却发现一个叙利亚难民Jay搬来与他们同住,不过这个奇怪的组合倒是令主角理解到家的意义。(原版是一位大马士革非法移民偷藏在主角车子的行李厢)  原版主演Rufus Jones担当主创﹑Stacy Traub编剧﹑B汪峰 新歌en Stiller执导。

  • 汉娜·蒙塔娜第二季

    已完结

    欧美剧

      超搞笑的青春期喜剧,从一个从田纳西来到加州Malibu的女孩开始,一个表面平凡的女孩Miley Stewart,在平凡的日常生活以外她还有另外一个作为非常出名的少女歌星Hannah Montana 的秘密生活。还爱着一个男孩,名字是Jake。故事就从她周围的朋友亲戚开始.。知道她的双重身份的只有她的爸爸兼经纪人罗比以及哥哥杰克森两人,不过当Miley从德州搬到加州的一个小镇之后,她极力隐瞒的秘密身份,因为常常必须巡回演出而逐渐露出破绽……  Miley在舞台上虽然是耀眼的摇滚小天后,然而在家里她却过着和你我一样的平凡生活。在学校里她是Miley,同学们都很喜欢 Hannah Montana,但是不知道Miley和Hannah Montana小草视频免费观看其实是同一个人。她超酷的老爸跟搞笑的老哥,还有不小心知道她秘密身份的超要好的朋友Lily和Oliver,为了要守护这个共同秘密而笑料百出。

  • 测试2022

    HD

    科幻片

      'The Chariot' tells the story of a corporation and d中日乱码高清字幕octor (John Malkovich) t四四播放hat oversees the process of reincarnation, and a young man (Thomas Mann) who becomes a glitch in the system环太平洋 电影天堂 when he encounters a woman (Rosa Salazar) he loved in a previous life.

  • 秘岛2021

    HD

    恐怖片

    &l爱与死亡与机器人t;p>  两兄弟陪同一群视频博主寻找一个神秘的岛屿。但他们找到岛屿后,却发现了一个又一个可怕的秘密。&l听我说谢谢你手舞视频完整版t;/p>

  • 灰色国度

    HD

    纪录片

      In 2010 David Crowley, an Iraq veteran, aspiring filmmaker and charismatic up-and-coming voice in fringe politics, began production on his film 'Gray State.' Set in a dystopia私人高清免费影院n near-future where civil liberties are trampled by an unrestrained federal government, the film's crowd funded trailer was enthusiastically received by the burgeoning online community of libertarians, Tea Party activists as well as members of the nascent alt-right. In January of 2015, Crowley was found dead with his family辣妈正传在线观看 in their suburban Minnesota home. Their shocking deaths quickly become a cause célèbre for conspiracy theorists who speculate that Crowley was assassinated by a shadowy government concerned about a film and filmmaker that was getting too close to the truth about their aims.

  • 书本马戏团

    HD

    纪录片

      In 1976, Karen and Barry Mason had fallen on hard times and were looking for a way to support their young family when they answered an ad in the Los Angeles Times. Larry Flynt was seeking distributors for Hustler Magazine. What was expected to be a brief sideline led to their becoming fully immersed in the LGBT community as they took over a local store, Circus of Books. A decade later, they had become the biggest distributors of gay porn in the US.  The film focuses on the double life they led, trying to maintain the balance of being parents at a time when LGBT culture was not yet accepted. Their many challenges included fac天少ing jail time for a federal obscenity prosecution and enabling their store to be a place of refuge at the height of the AIDS crisis.  Circus of Books offers a rare glimpse into an untold chapter of queer history, and it is told through the lense of the owners' own daughter, Rachel Mason, an artist, filmmaker and musician.

  • 生命的选择

    已完结

    欧美剧

      这是一部充满未来主义和阴谋论的悬疑剧集,故事发生在一个虚构的乌托邦世界中——由于女人们再也无法生育,人类即将彻底灭绝。科学家通过努力成功让100个胚胎受精,于是一场挑选「代孕母亲」的全国性海选行动拉开帷幕。随着这一科学突破的真相逐渐浮出水面,矛盾冲突、黑暗秘密和看不见的黑手也逐渐显露端倪。无论政府还是强权势力,他们都觊觎一样当代人最羡慕的东西——组建一个家庭的权利。Michael Graziadei扮演正在戒酒的酒鬼、爱上特种兵电视剧全集(1 45)单身父亲Kyle,他的孩子是这个国家最后一个通过母体出生的正常婴儿。Lesley-Ann Brandt扮演渴望得到孩子的美国士兵Casey,她决定参加海选行动,抓住一切机会当上母亲。Louise Lombard扮演曾经自由奔放的艺术家Tori,现在是华盛顿的著名作家,也是政坛的实权人物。她的话对当前的舆论有很强的导向作用,甚至能直接影响总统。Marley Sheldon扮演该剧的主人公Alison Scott医生,一位聪明绝顶的生育专家,她获得一项重大「科学突破」——当全球所有女人都无法怀孕的时候,她成功培育出100个受精卵。她认为自己找到了挽救人类的方法,却没有料到自己卷入一场生死危局。David Alpay扮演Alison Scott的同事、实验室助理James。Martin Donovan扮演「美国生育委员李天一搞过梦鸽会主任」Darius Hayes,一个老谋深算的政客。他总认为自己是在做大善事,而他为了达到目的愿意使用任何手段。Salli Richardson-Whitfield扮演美国第一夫人Gabrielle,拼命想要让自己怀上一个孩子。

  • 阴影之中2019

    HD

    恐怖片

      一位私人侦探必须查出杀害土豆网在线看她叔叔的凶手,同时保守她是狼人后代的秘密……

  • 橄榄树之恋

    HD

    爱情片

      Cabella Oil and Brandini's have been competing oil ranches for decades. However, it wasn't always this way. Founders Raphael Brandini and Frank Cabella once worked harmoniously together, until their relationship fractured, causing them to split their joint ranch into two. Feisty and competitive heir to homegrown operated Cabella Oil, Nicole Cabella is determined to prove she's ready to take the reins of her family's business. And she's all set to initiate a renovation plan that will allow her to expand Cabella to the next level. All set, until Jake Brandini re-appears in Sunset Valley, that is. Corporate attorney Jake is sidetracked from his day-job when he's called back to the juggernaut Brandini ranch due to a family emergency. While there, Jake identifies a land dispute at the border between the Cabella and Brandini年轻的老师中文版在线 properties. Having been neglectful to his own family company, he decides to win back the land for them. In doing so, he re-ignites the rivalry between both factions, as Nicole refuses to concede to his claim on the land. Instead of pursuing a long and costly court battle, the local Sunset Valley judge proposes an unconventional manner of deciding the land's ownership: whichever ranch wins the annual Sunset Valley Olive Oil Competition wins the land. The Brandini's have won three consecutive years, so Jake is confident in accepting the challenge, though he personally has no experience manufacturing oil. On the other hand, Nicole has oil in her blood, but she'll have to conquer her own self-doubt if she wants to be victorious. As Jake and Nicole work towards creating their respective olive oil submissions, while enjoying the annual Fall Festival as they do, they discover they may have more in common than they realized - and sparks begin to fly.

  • 情话童真

    HD

    爱情片

      故事蚂蚁窝图片发生在16世纪。丹妮尔(德鲁·巴里摩尔 Drew Barrymore 饰)从小和父亲相依为命,但父亲迎娶继母罗米拉(安杰丽卡·休斯顿 Anjelica Huston 饰)后,很快出意外身亡,丹妮尔成了灰姑娘,但依旧坚强独立、热爱生活。机缘巧合之下,丹妮尔与法国王子亨利(多格雷·斯科特 Dougray Scott 饰)相遇,还从绿林大盗手中救了王子一命,两人彼此倾心,王子更想为她拒绝家中安排的政治婚姻。但继母得知这一切后,处心积虑想让自己长女玛格丽十里红妆薄慕颜特(梅根·多兹 Megan Dodds 饰)嫁给王子,还谎称丹妮尔只是家中女仆。王子听信了继母谎言,愤怒地放弃了丹妮尔……

  • 浴血野球场

    HD

    科幻片

      在不久后的2005年,一种名周楚楚 三级为“轮滑球"(Rollerball)的新兴竞技运动以其超乎寻常的惊险、刺激吸引了大众的注意力,成为一大体育娱乐热点。每当赛季到来时,数以万计狂热的观众都222ooo会疯狂地为自己支持的队伍下注,然后守在电视前观看紧张的现场转播。然而,在这项运动的背后,却隐藏夫妻双双把家还原唱着黑暗残酷的内幕……

  • 失宠于上帝的孩子们

    HD

    剧情片

      故事发生在基特里奇总督学校中,詹姆斯(威廉·赫特 William Hurt 饰)是在火影最新一集这里任教的教师。凭借着自己特立独行的教学手段,詹姆斯很快就获得了学生的好感和同事的信任,对于在这里的平静生活,詹姆斯本人亦十分满意。  萨拉(玛丽·玛特琳 Marlee Matlin 饰)曾经是这所学校的学生,毕业后,她几经辗国产精品自在拍在线播放转,回到了此地当起了清洁工。因为生理的残疾,萨拉个性孤僻,但这反而吸引了詹姆斯的注意,他主动接近莉兹,希望莉兹能够重拾自信继续学习深造。随着时斗罗大陆电视剧版全集免费间的推移,莉兹对于詹姆斯的态度从一开始的及其抗拒转而变成了略有好感,她的性格开始慢慢转变,和詹姆斯的距离也原来越近。可就在这时,新的问题又出现了。

  • 铁血人狼

    HD

    恐怖片

      At the U.S. Secret Operations Center a small group of doc在线天堂网新版tors led by Kim Delaney are experimenting with a metallic skin on a frozen cadaver. This particular body is that of a secret agent that succumbed twenty years earlier to self injection of a blood sample from a...werewolf. Barry Bostwick plays the evil Colone战狼2免费在线观看l harboring the blueprints for this gruesome experiment. Thus the Government has given life to a wolf-like creature with metal skin. The only reason I watched this is Kim Delaney. I'd一看电影 watch her do a puppet show! Also in the cast are: Brian Brophy, Carole Davis, Tim Duquette and Kane Hodder as the MetalBeast. Pretty bad movie except for the last twenty minutes or so.

  • 破胆三次3

    HD

    恐怖片

      A stran厚颜无耻无删减版ge race of human-like marsupials appear suddenly in Australia, and a sociologist who studies these creatures falls in love with a female one. Is this a dangerous combination?

  • 天才一族1990

    HD

    喜剧片

      广告人越疯狂,做出的广告就越有笑点。某广告公司的文案编辑安·莫瑞(杜德利·摩尔扮演),发现自己只能想出老实的广告文案之后,被公司送进了精神病院。然而讽刺的是,他的这种直言不讳的文案风格却大受欢迎,并开始和精神病院中的“疯子”们一起合作,写出更多既实在又疯狂得让人拍案叫绝的文案。以下就是几则“疯子”们创作的搞笑文案和片中的部分爆笑点。  爆笑点之一:为美联航空公司做的广告文案——“乘坐美联航空公司的飞机,大部分乘客都能活着回去。”  爆笑点之二:为邮局做的广告文案。一辆飞速行驶的邮车在公路上横冲直撞。邮递员亲切和蔼地说:“为了能把您的信件及时送达,撞死几个人又何妨?”  爆笑点之三:给某旅行社做的巴哈马群岛的旅游广告。一个丰腴性感的比基尼女郎充斥整个画面,她的名字叫做“巴哈马”,广告语为:“进入巴哈马!”镜头免费观看中文字幕午夜理论一切换,无数接线员在跟投诉者解释:“我们提供的服务不包括‘进入女郎身体’这个项目。”  爆笑点之四:一个亚裔青年精神病患者在得到了一辆汽车的奖赏后,急于试试身手,一边脚踩油门,一边骂骂咧咧:“他妈的,先轧死几个白人。”  爆笑点之五:给纽约市做的形象广告——“这里的谋杀案发生数量比去年少了一件。”  爆笑点之六:给索尼公司做的广告文案。播出前版本(美国人描述):“因为日本人(个子矮)的眼睛离电子元件的距离比较近,所以电器由他们生产。” 播出后版本(日本人描述):“由于西方人(个子高)的眼睛离电子元件的距离比较远,所以这种攒精密仪器的活儿由我们来干,索尼电器。”

  • 食人鲨2014

    HD

    喜剧片

      3d金瓶高清完整版大白鲨的生物工程设计为食人鱼的大小,目的是生活在富人异国情调的水族馆中,当纽约市进入供水系统并做大白鲨最擅长的事情时,会吓倒纽约市。&林志颖电视剧lt;/p>

  • 拜占庭

    HD

    剧情片

      昏暗的霓虹灯下,阴冷潮湿的城市里栖息着两名神秘女子:克拉拉(杰玛·阿特登 Gemma Arterton 饰)和埃莉诺(西尔莎·罗南 Saoirse Ronan 饰)。她们以姐妹相称,固守着在都市一隅的方寸空间,不愿引起他人的注意。对于血族来说,这也许是最好的办法。只是在 命运的驱赶下,“安宁”注定与她们无缘,两人辗转来到了另一座城市。四处寻调教工具找生计的克拉拉偶然结识刚刚失去母亲的中年男子诺埃尔(丹尼尔·梅斯 Daniel Mays 饰),相似的境遇让他们感同身受。诺埃尔因此为这两名美丽女子提供栖身之所。  绵亘上百年的凄惶记忆,无以排遣的永生孤独,以及深锁心底的秘密,随着鲜红的血液缓缓流淌……

首页

电影

电视剧

动漫

综艺

影视资讯